The Bachelor of Science in Mechanical Engineering
The Mechanical Engineering degree program includes the study of mechanical design, thermal-fluid systems, applied mechanics, and automation. The mechanical engineering student is prepared in all of these areas in order to analyze and design complex mechanical systems. Graduates can specialize in areas such as energy conversion systems, mechanisms and machines, manufacturing, materials, and automation through elective courses.
Mechanical Engineering Program Mission
The mechanical engineering program has the primary mission of providing students a high-quality undergraduate engineering education with
1. A curriculum that is firmly grounded in engineering fundamentals
2. A faculty that provides superior teaching and mentoring both in and out of the classroom
3. A faculty whose focus is undergraduate education
4. Class sizes that encourage student participation
5. Project experiences that build on fundamentals and develop team skills
6. Facilities and equipment that are readily accessible
7. An environment that is conducive to learning and encourages students from different genders and backgrounds.
The faculty is committed to offering a broad undergraduate experience that will promote professional growth and prepare students for a variety of engineering careers, graduate studies, and continuing education.
Mechanical Engineering Program Educational Objectives
The program's educational objectives are best framed in terms of goals for its graduates. Mechanical engineering graduates will:
1. Be effective engineers and problem solvers.
2. Be well educated in the mechanical engineering sciences.
3. Be able to use engineering tools that will enhance their productivity.
4. Be familiar with current technology and how it can be incorporated into their design, analysis, and testing activities including an understanding of manufacturing methods and the use of computers, sensors, and actuators to automate machines and processes.
5. Be effective oral, written, and graphical communicators.
6. Be able to function effectively as members of multi-disciplinary teams.
7. Have an appreciation for the individual, society, and human heritage, and be aware of the impact of their designs on human-kind and the environment.
8. Be prepared for a variety of engineering careers, graduate studies, and continuing education.
Mechanical Engineering Design Experience
The mechanical engineering program at CSU, Chico is a traditional balance of engineering science and design. The design sequence for mechanical engineers is a progressive one. The courses which are primarily devoted to design are:
MECH 140 - Introduction to Engineering Design and Automation
MECH 340 - Mechanical Engineering Design
MECH 440A- Mechanical Engineering Design Project I
MECH 440B- Mechanical Engineering Design Project II
The freshman experience (MECH 140) gives students an introduction to the engineering design process and exposure to core automation concepts and components through semester-long projects. At the junior level (MECH 340), there is an opportunity to learn about safety, failure, reliability, codes and standards, and economic considerations, while carrying out detailed design of mechanical components. In the final senior project (MECH 440A and MECH 440B), students are expected to exercise what they learned throughout the preceding design courses in a final project that includes manufacturing and testing, as well as the more global aspects of design including product realization, economic factors, environmental issues, and social impact. Together, these experiences prepare graduates to be successful practitioners with an awareness of the multitude of issues involved.
Total Course Requirements for the Bachelor's Degree: 127 units
See Bachelor's Degree Requirements in the University Catalog for complete details on general degree requirements. A minimum of 40 units, including those required for the major, must be upper division.
A suggested Major Academic Plan (MAP) has been prepared to help students meet all graduation requirements within four years. You can view MAPs on the Degree MAPs page in the University Catalog or you can request a plan from your major advisor.
General Education Pathway Requirements: 48 units
See General Education in the University Catalog and the Class Schedule for the most current information on General Education Pathway Requirements and course offerings.
This major has approved GE modifications. See below for information on how to apply these modifications.
- Take CMST 131 for Oral Communication (A1)
- Critical Thinking (A3) is waived.
- MATH 120 is an approved advanced course substitution for Quantitative Reasoning (A4)
- CHEM 111 and PHYS 204A are approved advanced course substitutions for Physical Sciences (B1).
- Take only one course in either Arts (C1) or Humanities (C2).
- Take only course in either Individual & Society (D1) or Societal Institutions (D2).
- CIVL 495 meets Learning for Life (E).
- Take only two upper-division Pathway courses; one in Arts/Humanities and one in Social Sciences.
Diversity Course Requirements: 6 units
See Diversity Requirements in the University Catalog. Most courses taken to satisfy these requirements may also apply to General Education .
Both courses must also satisfy one of the General Education requirements in order for 127 units to fulfill all requirements for the Mechanical Engineering degree.
Literacy Requirement:
See Mathematics and Writing Requirements in the University Catalog. Writing proficiency in the major is a graduation requirement and may be demonstrated through satisfactory completion of a course in your major which has been designated as the Writing Proficiency (WP) course for the semester in which you take the course. Students who earn below a C- are required to repeat the course and earn a C- or higher to receive WP credit. See the Class Schedule for the designated WP courses for each semester. You must pass ENGL 130I or JOUR 130I (or equivalent) with a C- or higher before you may register for a WP course.
Course Requirements for the Major: 100 units
Completion of the following courses, or their approved transfer equivalents, is required of all candidates for this degree.
Enrollment in any mathematics course requires a grade of C- or higher in all prerequisite courses or their transfer equivalents.
Lower-Division Requirements: 50 units
17 courses required:
SUBJ NUM | Title | Sustainable | Units | Semester Offered | Course Flags |
---|---|---|---|---|---|
CIVL 211 | Statics | 3.0 | FS | ||
Prerequisites: MATH 121, PHYS 204A. | |||||
CHEM 111 | General Chemistry | 4.0 | FS | ||
Prerequisites: Second-year high school algebra; one year high school chemistry. (One year of high school physics and one year of high school mathematics past Algebra II are recommended.) | |||||
EECE 211 | Linear Circuits I | 3.0 | FS | ||
Prerequisites: MATH 121, PHYS 204B. | |||||
EECE 211L | Linear Circuits I Activity | 1.0 | FS | ||
Corequisites: EECE 211. | |||||
MATH 120 | Analytic Geometry and Calculus | 4.0 | FS | ||
Prerequisites: Completion of ELM requirement; both MATH 118 and MATH 119 (or high school equivalent); a score that meets department guidelines on a department administered calculus readiness exam. | |||||
MATH 121 | Analytic Geometry and Calculus | 4.0 | FS | ||
Prerequisites: MATH 120. | |||||
MATH 220 | Analytic Geometry and Calculus | 4.0 | FS | ||
Prerequisites: MATH 121. | |||||
MATH 260 | Elementary Differential Equations | 4.0 | FS | ||
Prerequisites: MATH 121. | |||||
MECH 100 | Graphics I | 1.0 | FS | ||
Corequisites: MECH 100L. | |||||
MECH 100L | Graphics I Laboratory | 1.0 | FS | ||
Corequisites: MECH 100. | |||||
MECH 140 | Introduction to Engineering Design and Automation | 2.0 | FS | ||
MECH 200 | Graphics II | 2.0 | FS | ||
Prerequisites: MECH 100 and MECH 100L. | |||||
MECH 208 | Introduction to Technical Computing | 3.0 | SP | ||
Prerequisite: MATH 121. Recommended: PHYS 204A. | |||||
MECH 210 | Materials Science and Engineering | 3.0 | FS | ||
Prerequisites: PHYS 204A; CHEM 111. | |||||
PHYS 204A | Physics for Students of Science and Engineering: Mechanics | 4.0 | FS | ||
Prerequisites: High school physics or faculty permission. Concurrent enrollment in or prior completion of MATH 121 (second semester of calculus) or equivalent. | |||||
PHYS 204B | Physics for Students of Science and Engineering: Electricity and Magnetism | 4.0 | FS | ||
Prerequisites: MATH 121, PHYS 204A with a grade of C- or higher. | |||||
SMFG 160 | Manufacturing Processes | 3.0 | FS | ||
Upper-Division Requirements: 50 units
15 courses required:
SUBJ NUM | Title | Sustainable | Units | Semester Offered | Course Flags |
---|---|---|---|---|---|
CIVL 302 | Engineering Risk and Economic Analysis | 3.0 | FS | ||
Prerequisites: MATH 121, junior standing. | |||||
CIVL 311 | Strength of Materials | 4.0 | FS | ||
Prerequisites: CIVL 211 with a grade of C- or higher; MATH 260 and MECH 210 (may be taken concurrently). | |||||
CIVL 321 | Fluid Mechanics | 4.0 | FS | ||
Prerequisites: CIVL 211 with a grade of C- or higher. Recommended: MATH 260, MECH 320 (may be taken concurrently). | |||||
CIVL 495 | Professional Issues in Engineering | 3.0 | FS | ||
Prerequisites: ENGL 130 or equivalent; senior standing. | |||||
MECA 380 | Measurements and Instrumentation | 3.0 | SP | ||
Prerequisites: EECE 211, EECE 211L; either CSCI 111 or MECH 208. Recommended: CIVL 302. | |||||
MECA 482 | Control System Design | 3.0 | FA | ||
Prerequisites: EECE 211, MATH 260. Recommended: MECA 380, MECH 320; either CSCI 111 or MECH 208. | |||||
MECH 306 | Equation Solving Techniques | 3.0 | FA | ||
Prerequisites: MATH 260, MECH 208. Recommended: PHYS 204A. | |||||
MECH 308 | Finite Element Analysis | 3.0 | SP | ||
Prerequisites: CIVL 311 with a grade of C- or higher, MECH 306. Recommended: PHYS 204C. | |||||
MECH 320 | Dynamics | 3.0 | FS | ||
Prerequisites: CIVL 211 with a grade of C- or higher, MATH 260. | |||||
MECH 332 | Thermodynamics | 3.0 | FS | ||
Prerequisites: PHYS 204A. Recommended: PHYS 204C. | |||||
MECH 338 | Heat Transfer | 3.0 | SP | ||
Prerequisites: CIVL 321, MECH 332. Recommended: MECH 306. | |||||
MECH 340 | Mechanical Engineering Design | 3.0 | SP | ||
Prerequisites: CIVL 311 with a grade of C- or higher, MECH 100, MECH 100L, MECH 140, MECH 210, SMFG 160. Recommended: MECH 320. | |||||
MECH 432 | Energy Systems | 4.0 | FA | ||
Prerequisites: MECH 338. | |||||
MECH 440A | Mechanical Engineering Design Project I | 3.0 | FA | GW | |
Prerequisites: ENGL 130 or JOUR 130 (or equivalent) with a grade of C- or higher, MECH 200, MECH 340. Recommended: CIVL 302, MECA 380, MECH 308, MECH 338. | |||||
MECH 440B | Mechanical Engineering Design Project II | 2.0 | SP | ||
Prerequisites: MECH 440A. Recommended: CIVL 302, MECA 380, MECH 308, MECH 338. |
3 units selected from:
An upper-division course chosen from CIVL, CSCI, EECE, MECA, MECH, or SMFG programs.
Grading Requirement:
All courses taken to fulfill major course requirements must be taken for a letter grade except those courses specified by the department as Credit/No Credit grading only.
Fundamentals of Engineering Examination
The Fundamentals of Engineering Exam is the first of two exams that the California State Board of Registration requires to be passed to be a licensed professional engineer. Prior to graduation, those majoring in Mechanical Engineering must apply to the California State Board of Registration and take the exam. Passing the exam is not required for graduation.
Advising Requirement:
Advising is mandatory for all majors in this degree program. Consult your undergraduate advisor for specific information.
Honors in the Major:
Honors in the Major is a program of independent work in your major. It requires 6 units of honors course work completed over two semesters.
The Honors in the Major program allows you to work closely with a faculty mentor in your area of interest on an original performance or research project. This year-long collaboration allows you to work in your field at a professional level and culminates in a public presentation of your work. Students sometimes take their projects beyond the University for submission in professional journals, presentation at conferences, or academic competition. Such experience is valuable for graduate school and professional life. Your honors work will be recognized at your graduation, on your permanent transcripts, and on your diploma. It is often accompanied by letters of commendation from your mentor in the department or the department chair.
Some common features of Honors in the Major program are:
- You must take 6 units of Honors in the Major course work. All 6 units are honors classes (marked by a suffix of H), and at least 3 of these units are independent study (399H, 499H, 599H) as specified by your department. You must complete each class with a minimum grade of B.
- You must have completed 9 units of upper-division course work or 21 overall units in your major before you can be admitted to Honors in the Major. Check the requirements for your major carefully, as there may be specific courses that must be included in these units.
- Your cumulative GPA should be at least 3.5 or within the top 5% of majors in your department.
- Your GPA in your major should be at least 3.5 or within the top 5% of majors in your department.
- Most students apply for or are invited to participate in Honors in the Major during the second semester of their junior year. Then they complete the 6 units of course work over the two semesters of their senior year.
- Your honors work culminates with a public presentation of your honors project.
While Honors in the Major is part of the Honors Program, each department administers its own program. Please contact your major department or major advisor to apply.