CIVL 101
|
Introduction to Civil Engineering
|
|
1.0
|
FA
|
|
Introduction to the profession of Civil Engineering and the various sub-disciplines of Civil Engineering. Overview of the professional engineer licensing process. Overview of the CSU, Chico Civil Engineering curriculum and the disciplinary patterns in the curriculum. Discussion of the importance and purpose of both professional societies and graduate education. 3 hours laboratory. Credit/no credit grading.
|
CIVL 130
|
Surveying
|
|
3.0
|
FA
|
|
Prerequisites: MATH 120 (may be taken concurrently).
Theory and practice in measurement and computation of distances, angles, and areas on the earth's surface. Error of combined measurements analysis. Use of scientific calculator required. 2 hours discussion, 3 hours laboratory.
|
CIVL 140
|
Transportation Planning, Surveying, and Graphics
|
|
3.0
|
SP
|
|
Prerequisite: CIVL 130.
This course introduces civil engineering design standards, concepts, and procedures related to transportation engineering and construction management. Topics include the standards and design of horizontal curves, vertical curves, and earthwork related to transportation projects in addition to survey staking, state plane coordinates, geographic information systems, and global positioning systems related to project surveying. The laboratory portion of this course includes the application of 3-dimensional graphic modeling software requiring creativity in design, development of construction plans, and operation of modern surveying equipment, such as total stations and GPS systems. 2 hours discussion, 3 hours laboratory.
|
CIVL 175
|
Biological Processes in Environmental Engineering
|
|
3.0
|
FS
|
GE
|
Prerequisites: High school biology and chemistry.
Introduction to biological processes used in environmental engineering analysis and design with emphasis on sustainability. Ecosystem structure and function, population dynamics, biochemical reactions, photosynthesis, microbial ecology, growth and kinetics. Engineering applications in control of communicable disease, aerobic and anaerobic degradation of organic waste, water quality management, drinking water treatment, wastewater and solid waste treatment, biomass energy, phytotechnology, and bioremediation. 2 hours lecture, 2 hours activity. This is an approved General Education course.
|
CIVL 198
|
Special Topics
|
|
1.0
-3.0
|
FS
|
|
This course is for special topics offered for 1.0-3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. 3 hours lecture.
|
CIVL 199
|
Special Problems
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Faculty permission.
This course is an independent study of special problems offered for 1.0-3.0 units. You must register directly with a supervising faculty member. 9 hours supervision. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading.
|
CIVL 205
|
Computer Applications in Engineering
|
|
2.0
|
FS
|
|
Prerequisites: PHYS 204A (may be taken concurrently).
Use of the computer in a variety of applications from the fields of engineering. Topics include computer hardware, operating systems, the Internet, technical word processing, electronic spreadsheets, computer charting and drawing, computer programming, and ethics. 4 hours activity.
|
CIVL 211
|
Statics
|
|
3.0
|
FS
|
|
Prerequisites: MATH 121, PHYS 204A.
Force systems, moments, equilibrium, centroids, and moments of inertia. 2 hours discussion, 2 hours activity.
|
CIVL 211X
|
Statics Problem Session
|
|
1.0
|
INQ
|
|
Corequisites: CIVL 211.
Supplemental applications and explanations intended to facilitate student understanding of content from CIVL 211. 3 hours independent study. You may take this course more than once for a maximum of 4.0 units. Credit/no credit grading.
|
CIVL 212
|
Civil Engineering Materials
|
|
3.0
|
FS
|
|
Prerequisite: CHEM 111.
The goal of this course is for you to develop an understanding of several types of material behaviors, with emphasis on materials commonly used in the civil engineering profession. Materials studied include wood, steel, concrete, soil, and asphalt paving materials. Technical writing and report formatting are emphasized as well. 2 hours lecture, 2 hours activity.
|
CIVL 231
|
Introduction to Environmental Engineering
|
|
3.0
|
FS
|
|
Prerequisites: CHEM 111, CIVL 175 (may be taken concurrently).
Introduction to environmental engineering and sustainability. Topics covered include: global and local environmental issues; UN's sustainable development goals; engineering in developing communities; life cycle assessment; material and energy balances; pollutant fate and transport; principles of green engineering; and environmental engineering pathways. 3 hours lecture. This course requires the use of a laptop computer and appropriate software.
|
CIVL 302
|
Engineering Sustainability and Economic Analysis
|
|
3.0
|
FS
|
|
Prerequisites: MATH 121, junior standing.
This course provides a foundation for green engineering design through life cycle assessment and life cycle cost analysis considering economically viable, socially just, and environmentally sustainable solutions (triple bottom line). This course teaches quantitative environmental and economic assessment tools. decision-making strategies, risk, sensitivity analysis, and uncertainty analysis. These skills are applied to real-world problems through group projects, emphasizing applied engineering, critical thinking, communication skills and teamwork. 3 hours discussion. This course requires the use of a laptop computer and appropriate software.
|
CIVL 302X
|
Engineering Economy & Statistics Problem Session
|
|
1.0
|
INQ
|
|
Corequisites: CIVL 302.
Supplemental applications and explanations intended to facilitate student understanding of content from CIVL 302. 3 hours independent study. Credit/no credit grading.
|
CIVL 311
|
Strength of Materials
|
|
4.0
|
FS
|
|
Prerequisites: CIVL 211 with a grade of C- or higher; MATH 260 (may be taken concurrently); CIVL 212 or MECH 210 (may be taken concurrently).
Strength and elastic properties of materials of construction; tension, compression, shear, and torsion stresses; deflection and deformation; stress analysis of beams and columns. 4 hours discussion.
|
CIVL 311X
|
Strength of Materials Problem Session
|
|
1.0
|
INQ
|
|
Corequisites: CIVL 311.
Supplemental applications and explanations intended to facilitate student understanding of content from CIVL 311. 2 hours activity. You may take this course more than once for a maximum of 4.0 units. Credit/no credit grading.
|
CIVL 313
|
Structural Mechanics
|
|
4.0
|
FS
|
|
Prerequisites: CIVL 205 or MECH 208 (may be taken concurrently); CIVL 311 with a grade of C- or higher.
Fundamentals of structural analysis for beams, trusses, and frames. Topics include loading (including seismic), influence lines, approximate analysis methods, deflection analysis, and statically indeterminate structures. Methods applicable to computer analysis are introduced. 4 hours discussion.
|
CIVL 321
|
Fluid Mechanics
|
|
4.0
|
FS
|
|
Prerequisites: CIVL 211 with a grade of C- or higher. Recommended: MATH 260, MECH 320 (may be taken concurrently).
Hydrostatics, principles of continuity, work-energy and momentum, viscous effects, dimensional analysis and similitude, flow in closed conduits, drag on objects. 3 hours discussion, 3 hours laboratory.
|
CIVL 321X
|
Fluid Mechanics Problem Session
|
|
1.0
|
INQ
|
|
Corequisites: CIVL 321.
Supplemental applications and explanations intended to facilitate student understanding of content from CIVL 321. 2 hours activity. You may take this course more than once for a maximum of 4.0 units. Credit/no credit grading.
|
CIVL 331
|
Environmental Engineering Chemistry
|
|
3.0
|
FA
|
|
Prerequisite: CIVL 231.
Chemical principles applicable to the analysis of natural and engineered water systems including acid base chemistry, precipitation and dissolution, oxidation-reduction, adsorption-desorption, and complexation. 2 hours lecture, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 389
|
Internship in Civil Engr
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Approval of supervising faculty member prior to off-campus assignment.
This course is an internship offered for 1.0-3.0 units. You must register directly with a supervising faculty member. This program is designed for students who wish to gain practical work experience with participating civil engineering firms/organizations. 3 hours lecture. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading.
|
CIVL 389M
|
Summer Internship in Civil Engineering
|
|
1.0
-3.0
|
SM
|
|
Prerequisite: Approval of supervising faculty member prior to off-campus assignment.
This course is an internship offered for 1.0 - 3.0 units. You must register directly with a supervising faculty member. This program is designed for students who wish to gain practical work experience with participating civil engineering firms/organizations. You may take this course more than once for a maximum of 15.0 units. Credit/no credit grading.
|
CIVL 398
|
Special Topics
|
|
1.0
-3.0
|
FS
|
|
This course is for special topics offered for 1.0-3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See the Class Schedule for the specific topic being offered.
|
CIVL 399
|
Special Problems
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Faculty permission.
This course is an independent study of special problems offered for 1.0-3.0 units. You must register directly with a supervising faculty member. 9 hours supervision. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading.
|
CIVL 400
|
Civil Engineering Activity
|
|
1.0
|
INQ
|
|
Prerequisite: Membership in a civil engineering student professional organization.
Co-curricular activity associated with one or more student professional organizations. Examples include collegiate competitions, such as the concrete canoe and the steel bridge contests, and sevice projects. Substantial participation is required (approximately 30 hours minimum). 2 hours activity. You may take this course more than once for a maximum of 10.0 units. Credit/no credit grading.
|
CIVL 411
|
Soil Mechanics and Foundations
|
|
4.0
|
SP
|
|
Prerequisites: CIVL 321 (may be taken concurrently); ENGL 130 or equivalent.
Soil properties, tests, and classification. Analysis of soil stresses, consolidation, shear strength, lateral pressures, and ground water movement. Related design consideration involving spread footings, piles, retaining walls, and slopes. Use of programmable scientific calculator required. 3 hours discussion, 3 hours laboratory.
|
CIVL 413
|
Advanced Structures
|
|
3.0
|
SP
|
|
Prerequisite: CIVL 313.
The goal of this course is for you to develop and understanding of advanced structural analysis topics that are commonly used in the practice of structural engineering. This course builds directlyupon your previous acquired skills in Statics, Strengths of materials, and Structural Mechanics, as well as your Math and Physics classes. Lateral, gravity, and dynamic loads on statically determinate and indeterminate structures are studied, with emphasis on solution techniques lending themselves to computer analysis. Nonlinear analysis and failure analysis techniques are also introduced. 3 hours lecture. This course requires the use of a laptop computer and appropriate software.
|
CIVL 415
|
Reinforced Concrete Design
|
|
4.0
|
FA
|
|
Prerequisites: CIVL 313. Recommended: CIVL 411.
The analysis and design of reinforced concrete structures and elements by the strength design method. Laboratory includes experiments on concrete, concrete structural elements, and a design project. 3 hours discussion, 3 hours laboratory.
|
CIVL 431
|
Environmental Engineering
|
|
4.0
|
SP
|
|
Prerequisites: CIVL 175 (or equivalent), junior standing.
Introduction to water quality, water supply, distribution, and drinking water treatment; wastewater collection, treatment, and disposal. Disease transmission; water quality parameters; physical, chemical, and biological processes in the treatment of water, wastewater, and biosolids. 3 hours discussion, 3 hours laboratory.
|
CIVL 441
|
Transportation Engineering
|
|
4.0
|
FA
|
|
Prerequisites: CIVL 140; CIVL 302 (may be taken concurrently).
Transportation systems and facility planning, design, construction, operations, and maintenance. Pavement design and traffic engineering fundamentals. Laboratory includes field studies, design exercises, and modeling/forecasting tasks. 3 hours discussion, 3 hours laboratory.
|
CIVL 461
|
Water Resources Engineering
|
|
3.0
|
SP
|
|
Prerequisites: CIVL 205 or MECH 208; CIVL 321 with a grade of C- or higher.
Water resources engineering covers principles of hydraulics and hydrology relevant to civil engineering applications. Topics include open channel hydraulics, rainfall-runoff predictions, ground water hydraulics, water budget modeling, storm water routing, and urban storm water management. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 495
|
Professional Issues in Engineering
|
|
3.0
|
FS
|
|
Prerequisites: ENGL 130I or equivalent; senior standing.
History of engineering, professional registration, codes of ethics, management issues, diversity, outsourcing, intellectual property, international development and technology transfer, sustainable design. A substantial written project with oral presentation is required. 2 hours discussion, 2 hours activity.
|
CIVL 498
|
Advanced Topics
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: To be established when courses are formulated.
This course is for special topics offered for 1.0-3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See The Class Schedule for the specific topic being offered. 3 hours lecture.
|
CIVL 499
|
Special Problems
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Faculty permission.
This course is an independent study of special problems offered for 1.0-3.0 units. You must register directly with a supervising faculty member. 3 hours supervision. You may take this course more than once for a maximum of 6.0 units. Credit/no credit grading.
|
CIVL 499H
|
Honors Project
|
|
3.0
|
INQ
|
|
Prerequisites: Completion of 12 units of upper-division C E courses, faculty permission.
This course may be taken twice for a maximum of 6 units. Prerequisite to the second semester is a B or higher in the first semester. Open by invitation to C E majors who have a GPA among the top 5% of C E students based upon courses taken at CSU, Chico. This is an "Honors in the Major" course; a grade of B or higher in 6 units of 499H certifies the designation of "Honors in the Major" to be printed on the transcript and the diploma. Each 3-unit course will require both formal written and oral presentations. 9 hours supervision. You may take this course more than once for a maximum of 6.0 units.
|
CIVL 551
|
Foundations Engineering
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 411, CIVL 415 (may be taken concurrently).
The application of soil mechanics principles to the design of foundations for buildings and earth structures. Integration of structural design and soil response. 3 hours discussion.
|
CIVL 554
|
Steel Design
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 313.
Theory, analysis, and design of steel structural elements and systems using the Load and Resistance Factor Design (LRFD) method. 3 hours discussion.
|
CIVL 556
|
Timber Design
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 313.
Theory and design procedures for timber structures and their connections to resist gravity and lateral loads. Basic element design by the Allowable Stress Design (ASD) and/or Load and Resistance Factor Design (LRFD) methods are detailed. Also covered is design of floor and roof systems and shear walls. One or two 3-hour field trips required. 3 hours discussion.
|
CIVL 556H
|
Timber Design - Honors
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 313.
Theory and design procedures for timber structures and their connections to resist gravity and lateral loads. Basic element design by the Allowable Stress Design (ASD) and/or Load and Resistance Factor Design (LRFD) methods are detailed. Also covered is design of floor and roof systems and shear walls. One or two 3-hour field trips required. 3 hours discussion.
|
CIVL 558
|
Earthquake and Wind Engineering
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 415, CIVL 554, or CIVL 556.
Earthquake and wind hazard related to the structural design of buildings. Topics include engineering seismology, wind environment and climatology, structural dynamics, structural loading, and design methodologies. Use of computer software for the static and dynamic analysis of three-dimensional building systems. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 558C
|
Earthquake and Wind Engineering - Capstone
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 415, CIVL 554, or CIVL 556.
Corequisite: CIVL 595.
Earthquake and wind hazard related to the structural design of buildings. Topics include engineering seismology, wind environment and climatology, structural dynamics, structural loading, and design methodologies. Use of computer software for the static and dynamic analysis of three-dimensional building systems. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 558H
|
Earthquake and Wind Engineering - Honors
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 313, MATH 260. Recommended: Concurrent enrollment in or prior completion of CIVL 415, CIVL 554, CIVL 556.
Earthquake and wind hazard related to the structural design of buildings. Topics include engineering seismology, wind environment and climatology, structural dynamics, structural loading, and design methodologies. Use of computer software for the static and dynamic analysis of three-dimensional building systems. 2 hours discussion, 2 hours activity.
|
CIVL 561
|
Hydrology and Open Channels Hydraulics
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 461.
Principles and applications of modern hydrology, precipitation, surface-water runoff, and open channel hydraulics. Includes topics in urban hydrology, stormwater controls and pollution controls. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 561C
|
Hydrology and Open Channel Hydraulics Capstone
|
|
3.0
|
FS
|
|
Prerequisite: CIVL 461.
Corequisite: CIVL 595.
Principles and application of modern hydrology, precipitation, surface-water runoff, and open channel hydraulics. Includes topics in urban hydrology, stormwater controls, and pollution controls. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 562
|
Groundwater Hydrology
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 461.
An introduction to modern groundwater hydrology emphasizing quantitative analysis of subsurface flow. Topics include well hydraulics, stream/aquifer interactions, and contaminant transport. Use of modeling tools and techniques is emphasized. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 562C
|
Groundwater Hydrology - Capstone
|
|
3.0
|
INQ
|
|
Prerequisite: CIVL 461.
Corequisite: CIVL 595.
An introduction to modern groundwater hydrology emphasizing quantitative analysis of subsurface flow. Topics include well hydraulics, stream/aquifer interactions, and contaminant transport. Use of modeling tools and techniques is emphasized. 2 hours discussion, 2 hours activity.
|
CIVL 567
|
Pipeline Hydraulics and Design
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 205; CIVL 302; CIVL 321 with a grade of C- or higher.
Quantitative analysis of pressurized pipelines, pipe networks. The course includes analysis of transients in pipeline systems caused by valve movement, pump power failure, etc; design of transient control devices. 3 hours discussion. This course requires the use of a laptop computer and appropriate software.
|
CIVL 571
|
Natural Systems for Wastewater Treatment
|
|
3.0
|
F1
|
|
Prerequisites: CIVL 431 or faculty permission.
Natural systems for the treatment of wastewater; transmission of excreta-related infections; treatment systems for removal of pathogens; wastewater and biosolids reuse in agriculture and aquaculture. Special emphasis on the problems of developing countries. 2 hours discussion, 2 hours activity.
|
CIVL 571C
|
Natural Systems for Wastewater Treatment - Capstone
|
|
3.0
|
F1
|
|
Prerequisite: CIVL 431.
Corequisite: CIVL 595.
Natural systems for the treatment of wastewater; transmission of excreta-related infections; treatment systems for removal of pathogens; wastewater and biosolids reuse in agriculture and aquaculture. Special emphasis on the problems of developing countries. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 575
|
Solid and Hazardous Waste Management
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 431 or faculty permission.
An introduction to the handling and management of solid and hazardous wastes. Emphasis on state-of-the-art engineering techniques and contemporary management issues based on social, economic, and legal considerations; risk assessment; case studies. Special emphasis on problems of developing countries. 3 hours discussion.
|
CIVL 575C
|
Solid and Hazardous Waste Management - Capstone
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 431 or faculty permission.
Corequisite: CIVL 595.
An introduction to the handling and management of solid and hazardous wastes. Emphasis on state-of-the-art engineering techniques and contemporary management issues based on social, economic, and legal considerations; risk assessment; case studies. Special emphasis on problems of developing countries. 2 hours discussion, 2 hours activity.
|
CIVL 585
|
Traffic Engineering
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 441 or faculty permission.
Traffic engineering fundamentals, traffic control signs, markings, and signals. Intersection and highway capacity. Highway safety and accident investigations. Design of streets and parking facilities. Assessment of the environmental impact of traffic. 3 hours discussion.
|
CIVL 586
|
Advanced Transportation Engineering Design
|
|
3.0
|
SP
|
|
Prerequisite: CIVL 441.
This course presents selected topics in advanced transportation engineering techniques, design, and analysis. These topics cover the advanced technologies in the areas of transportation pavements, transportation materials, traffic engineering, and travel demand modeling. The course is also designed to equip students with practical design oriented experience with comprehensive knowledge learned through previous transportation related classes. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 586C
|
Advanced Transportation Engineering Design - Capstone
|
|
3.0
|
SP
|
|
Prerequisite: CIVL 441.
Corequisite: CIVL 595.
This course presents selected topics in advanced transportation engineering techniques, design, and analysis. These topics cover the advanced technologies in the areas of transportation pavements, transportation materials, traffic engineering, and travel demand modeling. The course is also designed to equip students with practical design oriented experience with comprehensive knowledge learned through previous transportation related courses. 2 hours discussion, 2 hours activity. This course requires the use of a laptop computer and appropriate software.
|
CIVL 592
|
Construction Management
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 205; CIVL 321 (may be taken concurrently). Recommended: CIVL 302.
Introduction to construction engineering and management. Cost estimation for contract construction and engineering, including labor, material, equipment, and overhead costs. Construction procedures, equipment and methods; efficient use of excavation and hauling equipment operations. Application of crew balance, process chart and operations research techniques to construction operations. Planning, scheduling, and progress contols of construction operations. One or two three-hour field trips may be required. 3 hours discussion.
|
CIVL 595W
|
Capstone Design Project (W)
|
|
3.0
|
FS
|
GW
W
|
Prerequisites: Completion of GE Written Communication (A2) requirement; junior standing.
Corequisites: CIVL 558C, CIVL 561C, CIVL 562C, CIVL 571C, CIVL 575C, or CIVL 586C.
This course provides a broad-based capstone design experience in a coordinated semester long project. In support of the design project, emphasis is placed on fundamentals of technical writing, contracts, and specifications common to many fields of civil engineering. 3 hours discussion. This is an approved Graduation Writing Assessment Requirement course; a grade of C- or higher certifies writing proficiency for majors. This is an approved Writing Course. Formerly CIVL 595.
|
CIVL 598
|
Advanced Special Topics
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: To be established when courses are formulated.
This course is for special topics offered for 1.0-3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See The Class Schedule for the specific topic being offered. 3 hours lecture.
|
CIVL 599
|
Special Problems
|
|
1.0
-3.0
|
INQ
|
|
Prerequisites: Faculty permission.
This course is an independent study of special problems offered for 1.0-3.0 units. You must register directly with a supervising faculty member. You may take this course more than once for a maximum of 6.0 units. This course requires the use of a laptop computer and appropriate software.
|
CIVL 682
|
Introduction to Pavement Preservation
|
|
3.0
|
INQ
|
|
Prerequisites: Bachelor's Degree or faculty permission.
An overview of terms related to pavement management systems and their use in identifying both functional and structural distresses in flexible and rigid pavement and their role in pavement preservation strategies. 3 hours lecture.
|
CIVL 684
|
Rigid Pavement Preservation
|
|
3.0
|
INQ
|
|
Prerequisites: CIVL 682 or faculty permission.
Rigid pavement distress causes and measurements; project selection for preservation methods; construction best practices for preservation, maintenance, and rehabilitation processes. 3 hours lecture.
|
CIVL 697
|
Independent Study
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Faculty permission.
This course is a graduate-level independent study offered for 1.0-3.0 units. You must register directly with a supervising faculty member. 9 hours supervision. You may take this course more than once for a maximum of 6.0 units.
|
CIVL 698
|
Special Topics
|
|
1.0
-3.0
|
FS
|
|
Prerequisites: Department permission.
This course is for special topics offered for 1.0-3.0 units. Typically the topic is offered on a one-time-only basis and may vary from term to term and be different for different sections. See the Class Schedule for the specific topic being offered. 3 hours lecture. You may take this course more than once for a maximum of 3.0 units.
|
CIVL 699P
|
Master's Project
|
|
1.0
-6.0
|
FS
|
|
Prerequisites: See the department secretary.
This course is offered for 1.0-6.0. You must register directly with a supervising faculty member. 3 hours supervision. Credit/no credit grading.
|
CIVL 699T
|
Master's Thesis
|
|
1.0
-6.0
|
FS
|
|
Prerequisites: Faculty permission.
This course is a master's study offered as either a Master's Thesis or as a Master's Project for 1.0-6.0 units. You must register directly with a supervising faculty member. 3 hours supervision. Credit/no credit grading.
|